Skip to content
Snippets Groups Projects
Commit 5cd789a9 authored by Bert Palm's avatar Bert Palm 🎇
Browse files

dddddooc

parent 33cc3cb2
No related branches found
No related tags found
No related merge requests found
......@@ -7,30 +7,41 @@ Methods
Brief
- `copy(deep=True)` : Return a copy. See also [pandas.DataFrame.copy](
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html)
- `copy_empty()` : Return a new DictOfSeries object, with same properties than the original.
- [copy_empty()](#diosdictofseriescopy_empty) : Return a new DictOfSeries object, with same properties than the original.
- `all(axis=0)` : Return whether all elements are True, potentially over an axis. See also [pandas.DataFrame.all](
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.all.html)
- `any(axis=0)` : Return whether any element is True, potentially over an axis. See also [pandas.DataFrame.any](
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html)
- `squeeze(axis=None)` : Squeeze a 1-dimensional axis objects into scalars. Eg. a 1-column Dios is squeezes to the
underling Series. If `axis=None` it is also tried, to squeeze the possibly returned Series, from the (outer)
Dios-squeeze.
- `squeeze(axis=None)` : Squeeze a 1-dimensional axis objects into scalars.
See also [pandas.DataFrame.squeeze](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.squeeze.html)
- `to_df()` : Transform the Dios to a pandas.DataFrame
- [to_df()](#diosdictofseriesto_df) : Transform the Dios to a pandas.DataFrame
- `to_string(kwargs)` : Return a string representation of the Dios.
- `apply(func, args=(), **kwds)` : apply the given function to every column in the dios eg.
- [apply()](#diosdictofseriesapply) : apply the given function to every column in the dios eg.
- `astype()` : Cast the data to the given data type.
- `isin()` : return a boolean dios, that indicates if the corresponding value is in the given array-like
- `isna()` : Return a bolean array that is `True` if the value is a Nan-value
- `notna()` : inverse of `isnan()`
- `dropna()` : drop all Nan-values
- `index_of(method='union)`: Return a single(!) Index that is constructed from all the indexes of the columns.
- `in`
- `is`
- [index_of()](#diosdictofseriesindex_of): Return a single(!) Index that is constructed from all the indexes of the columns.
- `len(Dios)` : return the number of columns the dios has.
`copy_empty(columns=True)`
--------------------------
Properties
----------
- `columns` : Column index
- `indexes` : Series of indexes of columns
- `lengths` : Series of lengths of columns
- `values` : A array of length of the columns, with arrays of values, as sub-arrays
- `dtypes` : Series of dtypes of columns
- `itype` : The index type the Dios accept
- `empty` : True if the dios holds no data. Nevertheless the dios can have empty columns.
dios.DictOfSeries.copy_empty
---------------------------
`DictOfSeries.copy_empty(columns=True)`
Return a new DictOfSeries object, with same properties than the original.
If `columns=True`, the copy will have the same, but empty columns like the original.
......@@ -60,8 +71,11 @@ Columns: []
```
`to_df()`
---------
dios.DictOfSeries.to_df
----------------------
`DictOfSeries.to_df()`
Transform the Dios to a pandas.DataFrame. Missing common indices are filled with NaN's.
**Examples**
......@@ -90,9 +104,11 @@ columns a b c d
10 NaN NaN NaN 4.0
```
dios.DictOfSeries.apply
-------------------------------------------------
`apply(func, axis=0, raw=False, args=(), **kwds)`
-----------------------
`DictOfSeries.apply(func, axis=0, raw=False, args=(), **kwds)`
Apply the given function to every column in the dios. This is a very mighty tool to apply functions that
are defined on pandas.Series to multiple columns.
......@@ -187,21 +203,51 @@ dtype: object
dios.DictOfSeries.index_of
---------------------------
`index_of(method='union)`
`DictOfSeries.index_of(method='union)`
: return a single(!) Index that is constructed from all the indexes of the columns.
Aggregate indexes of all columns to one index by a given method.
**Parameters:**
- **method : str, default "union"**
Aggregation method
- 'all' : get all indices from all columns
- 'shared' : get indices that are present in every columns
- 'uniques' : get indices that are only present in a single column
- 'union' : alias for 'all'
- 'intersection' : alias for 'shared'
- 'non-uniques' : get indices that are present in more than one column
- **axis : {0 or ‘index’, 1 or ‘columns’}, default 0**
Properties
----------
- `columns` : Column index
- `indexes` : Series of indexes of columns
- `lengths` : Series of lengths of columns
- `values` : A array of length of the columns, with arrays of values, as sub-arrays
- `dtypes` : Series of dtypes of columns
- `itype` : The index type the Dios accept
- `empty` : True if the dios holds no data. Nevertheless the dios can have empty columns.
**Returns: pandas.Index**
The aggregated Index
**Examples**
```
>>> di
a | b | c | d |
===== | ====== | ====== | ===== |
0 0 | 2 5 | 4 7 | 6 0 |
1 7 | 3 6 | 5 17 | 7 1 |
2 14 | 4 7 | 6 27 | 8 2 |
3 21 | 5 8 | 7 37 | 9 3 |
4 28 | 6 9 | 8 47 | 10 4 |
5 35 | 7 10 | 9 57 | 11 5 |
6 42 | 8 11 | 10 67 | 12 6 |
7 49 | 9 12 | 11 77 | 13 7 |
8 56 | 10 13 | 12 87 | 14 8 |
9 63 | 11 14 | 13 97 | 15 9 |
>>> di.index_of()
RangeIndex(start=0, stop=16, step=1)
>>> di.index_of("shared")
Int64Index([6, 7, 8, 9], dtype='int64')
>>> di.index_of("uniques")
Int64Index([0, 1, 14, 15], dtype='int64')
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment