Newer
Older
Peter Lünenschloß
committed
datapath = './ressources/data/hydro_data.csv'
maintpath = './ressources/data/hydro_maint.csv'
.. plot::
:context:
:include-source: False
import matplotlib
import saqc
import pandas as pd
datapath = '../ressources/data/hydro_data.csv'
maintpath = '../ressources/data/hydro_maint.csv'
data = pd.read_csv(datapath, index_col=0)
maint = pd.read_csv(maintpath, index_col=0)
maint.index = pd.DatetimeIndex(maint.index)
data.index = pd.DatetimeIndex(data.index)
qc = saqc.SaQC([data, maint])
Peter Lünenschloß
committed
Multivariate Flagging
=====================
The tutorial aims to introduce the usage of SaQC in the context of some more complex flagging and processing techniques.
Mainly we will see how to apply Drift Corrections onto the data and how to perform multivariate flagging.
Peter Lünenschloß
committed
Peter Lünenschloß
committed
Peter Lünenschloß
committed
Peter Lünenschloß
committed
----------------
First import the data (from the repository), and generate an saqc instance from it. You will need to download the `sensor
data <https://git.ufz.de/rdm-software/saqc/-/blob/develop/sphinxdoc/ressources/data/hydro_config.csv>`_ and the
`maintenance data <https://git.ufz.de/rdm-software/saqc/-/blob/develop/sphinxdoc/ressources/data/hydro_maint.csv>`_
from the `repository <https://git.ufz.de/rdm-software/saqc.git>`_ and make variables `datapath` and `maintpath` be
paths pointing at those downloaded files. Note, that the :py:class:`~saqc.SaQC` digests the loaded data in a list.
This is done, to circumvent having to concatenate both datasets in a pandas Dataframe instance, which would introduce
`NaN` values to both the datasets, wherever their timestamps missmatch. `SaQC` can handle those unaligned data
internally without introducing artificially fill values to them.
data = pd.read_csv(datapath, index_col=0)
maint = pd.read_csv(maintpath, index_col=0)
maint.index = pd.DatetimeIndex(maint.index)
data.index = pd.DatetimeIndex(data.index)
qc = saqc.SaQC([data, maint]) # dataframes "data" and "maint" are integrated internally
We can check out the fields, the newly generated :py:class:`~saqc.SaQC` object contains as follows:
>>> qc.data.columns
Index(['sac254_raw', 'level_raw', 'water_temp_raw', 'maint'], dtype='object', name='columns')
The variables represent meassurements of *water level*, the *specific absorption coefficient* at 254 nm Wavelength,
the *water temperature* and there is also a variable, *maint*, that refers to time periods, where the *sac254* sensor
was maintained. Lets have a look at those:
.. doctest:: default
>>> qc.data_raw['maint'] # doctest:+SKIP
Timestamp
2016-01-10 11:15:00 2016-01-10 12:15:00
2016-01-12 14:40:00 2016-01-12 15:30:00
2016-02-10 13:40:00 2016-02-10 14:40:00
2016-02-24 16:40:00 2016-02-24 17:30:00
.... ....
2017-10-17 08:55:00 2017-10-17 10:20:00
2017-11-14 15:30:00 2017-11-14 16:20:00
2017-11-27 09:10:00 2017-11-27 10:10:00
2017-12-12 14:10:00 2017-12-12 14:50:00
Name: maint, dtype: object
Measurements collected while maintenance are not trustworthy, so any measurement taken, in any of the listed
intervals should be flagged right away. This can be achieved, with the :py:meth:`~saqc.SaQC.flagManual` method. Also,
we will flag out-of-range values in the data with the :py:meth:`~saqc.SaQC.flagRange` method:
.. doctest:: default
>>> qc = qc.flagManual('sac254_raw', mdata='maint', method='closed', label='Maintenance')
>>> qc = qc.flagRange('level_raw', min=0)
>>> qc = qc.flagRange('water_temp_raw', min=-1, max=40)
>>> qc = qc.flagRange('sac254_raw', min=0, max=60)
.. plot::
:context:
:include-source: False
qc = qc.flagManual('sac254_raw', mdata='maint', method='closed', label='Maintenance')
qc = qc.flagRange('level_raw', min=0)
qc = qc.flagRange('water_temp_raw', min=-1, max=40)
qc = qc.flagRange('sac254_raw', min=0, max=60)
Lets check out the resulting flags for the *sac254* variable with the :py:meth:`~saqc.SaQC.plot` method:
:include-source: False
:width: 80 %
:class: center
qc.plot('sac254_raw')
Now we should figure out, what sampling rate the data is intended to have, by accessing the *_raw* variables
constituting the sensor data. Since :py:attr:`saqc.SaQC.data` yields a common
`pandas.DataFrame <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`_ object, we can index it with
the desired variables as column names and have a look at the console output to get a first impression.
Peter Lünenschloß
committed
>>> qc.data[['sac254_raw', 'level_raw', 'water_temp_raw']] # doctest:+NORMALIZE_WHITESPACE
columns sac254_raw level_raw water_temp_raw
Timestamp
2016-01-01 00:02:00 18.4500 103.290 4.84
2016-01-01 00:17:00 18.6437 103.285 4.82
2016-01-01 00:32:00 18.9887 103.253 4.81
2016-01-01 00:47:00 18.8388 103.210 4.80
2016-01-01 01:02:00 18.7438 103.167 4.78
... ... ...
2017-12-31 22:47:00 43.2275 186.060 5.49
2017-12-31 23:02:00 43.6937 186.115 5.49
2017-12-31 23:17:00 43.6012 186.137 5.50
2017-12-31 23:32:00 43.2237 186.128 5.51
2017-12-31 23:47:00 43.7438 186.130 5.53
<BLANKLINE>
[70199 rows x 3 columns]
The data seems to have a fairly regular sampling rate of *15* minutes at first glance.
But checking out values around *2017-10-29*, we notice, that the sampling rate seems not to be totally stable:
>>> qc.data[['sac254_raw', 'level_raw', 'water_temp_raw']]['2017-10-29 07:00:00':'2017-10-29 09:00:00'] # doctest:+NORMALIZE_WHITESPACE
columns sac254_raw level_raw water_temp_raw
Timestamp
2017-10-29 07:02:00 40.3050 112.570 10.91
2017-10-29 07:17:00 39.6287 112.497 10.90
2017-10-29 07:32:00 39.5800 112.460 10.88
2017-10-29 07:32:01 39.9750 111.837 10.70
2017-10-29 07:47:00 39.1350 112.330 10.84
2017-10-29 07:47:01 40.6937 111.615 10.68
2017-10-29 08:02:00 40.4938 112.040 10.77
2017-10-29 08:02:01 39.3337 111.552 10.68
2017-10-29 08:17:00 41.5238 111.835 10.72
2017-10-29 08:17:01 38.6963 111.750 10.69
2017-10-29 08:32:01 39.4337 112.027 10.66
2017-10-29 08:47:01 40.4987 112.450 10.64
Those instabilities do bias most statistical evaluations and it is common practice to apply some
:doc:`resampling functions <../funcSummaries/resampling>` onto the data, to obtain a regularly spaced timestamp.
(See also the :ref:`harmonization tutorial <cook_books/DataRegularisation:data regularisation>` for more informations
We will apply :py:meth:`linear harmonisation <saqc.SaQC.linear>` to all the sensor data variables,
to interpolate pillar points of multiples of *15* minutes linearly.
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
.. doctest:: default
>>> qc = qc.linear(['sac254_raw', 'level_raw', 'water_temp_raw'], freq='15min')
.. plot::
:context: close-figs
:include-source: False
qc = qc.linear(['sac254_raw', 'level_raw', 'water_temp_raw'], freq='15min')
The resulting timeseries has regular timestamp and includes only values that evaluate to `NaN` or did pass the range
check and the maintenance data flagging:
.. doctest:: default
>>> qc.data['sac254_raw'] #doctest:+NORMALIZE_WHITESPACE
Timestamp
2016-01-01 00:00:00 NaN
2016-01-01 00:15:00 18.617873
2016-01-01 00:30:00 18.942700
2016-01-01 00:45:00 18.858787
2016-01-01 01:00:00 18.756467
...
2017-12-31 23:00:00 43.631540
2017-12-31 23:15:00 43.613533
2017-12-31 23:30:00 43.274033
2017-12-31 23:45:00 43.674453
2018-01-01 00:00:00 NaN
Name: sac254_raw, Length: 70194, dtype: float64
Since points, that were identified as malicous get excluded, before the harmonization, the resulting regularly sampled
timeseries does not include thme anymore:
.. doctest:: default
>>> qc.plot('sac254_raw') # doctest:+SKIP
:include-source: False
:width: 80 %
:class: center
Peter Lünenschloß
committed
Drift Correction
----------------
The variables *SAK254* and *Turbidity* show drifting behavior originating from dirt, that accumulates on the light
sensitive sensor surfaces over time. The effect, the dirt accumulation has on the measurement values, is assumed to be
properly described by an exponential model. The Sensors are cleaned periodocally, resulting in a periodical reset of
the drifting effect. The Dates and Times of the maintenance events are input to the
:py:meth:`~saqc.SaQC.correctDrift`, that will correct the data in between any two such maintenance intervals.
Peter Lünenschloß
committed
Peter Lünenschloß
committed
>>> qc = qc.correctDrift('sac254_raw', target='sac254_corrected',maintenance_field='maint', model='exponential')
Peter Lünenschloß
committed
.. plot::
:context: close-figs
:include-source: False
Peter Lünenschloß
committed
qc = qc.correctDrift('sac254_raw', target='sac254_corrected',maintenance_field='maint', model='exponential')
Peter Lünenschloß
committed
Check out the results for the year *2016*
.. doctest:: default
>>> plt.plot(qc.data_raw['sac254_raw']['2016'], alpha=.5, color='black', label='original') # doctest:+SKIP
>>> plt.plot(qc.data_raw['sac254_corrected']['2016'], color='black', label='corrected') # doctest:+SKIP
Peter Lünenschloß
committed
Peter Lünenschloß
committed
plt.figure(figsize=(16,9))
plt.plot(qc.data_raw['sac254_raw']['2016'], alpha=.5, color='black', label='original')
plt.plot(qc.data_raw['sac254_corrected']['2016'], color='black', label='corrected')
plt.legend()
Peter Lünenschloß
committed
Multivariate Flagging Procedure
-------------------------------
Peter Lünenschloß
committed
We are basically following the *oddWater* procedure, as suggested in *Talagala, P.D. et al (2019): A Feature-Based
Procedure for Detecting Technical Outliers in Water-Quality Data From In Situ Sensors. Water Ressources Research,
55(11), 8547-8568.*
First we define a transformation we want the variables to be normalized with.
We just import *scipys* `zscore` function and wrap it, so that it will
be able to digest *nan* values without returning *nan*
>>> from scipy.stats import zscore
>>> zscore_func = lambda x: zscore(x, nan_policy='omit')
.. plot::
:context: close-figs
:include-source: False
from scipy.stats import zscore
zscore_func = lambda x: zscore(x, nan_policy='omit')
Now we can pass the function to the :py:meth:`saqc.SaQC.transform` method.
>>> qc = qc.transform(['sac254_corrected', 'level_raw', 'water_temp_raw'], target=['sac_z', 'level_z', 'water_z'], func=zscore_func, freq='30D')
.. plot::
:context: close-figs
:include-source: False
qc = qc.transform(['sac254_raw', 'level_raw', 'water_temp_raw'], target=['sac_z', 'level_z', 'water_z'], func=zscore_func, freq='30D')
The idea of the *oddWater* algorithm, is, to assign any timestamp a score, derived from the distance of the *k* nearest
neighbors of the datapoint related to that score. We can do this, via the :py:meth:`~saqc.SaQC.assignKNNscore` method.
>>> qc = qc.assignKNNScore(field=['sac_z', 'level_z', 'water_z'], target='kNNscores', freq='30D', n=5)
>>> qc.plot('kNNscores') # doctest:+SKIP
:include-source: False
:width: 80 %
:class: center
qc = qc.assignKNNScore(field=['sac_z', 'level_z', 'water_z'], target='kNNscores', freq='30D', n=5)
qc.plot('kNNscores')
Those scores roughly correlate with the isolation of the scored points in the phase space. For example, have a look at
the phase space of *sac* and *level* in october 2016:
.. doctest:: default
>>> qc.plot('sac_z', phaseplot='level_z', xscope='2016-11') # doctest:+SKIP
:include-source: False
:width: 80 %
:class: center
qc.plot('sac_z', phaseplot='level_z', xscope='2016-11')
Peter Lünenschloß
committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
We can clearly see some outliers, that seem to be isolated from the cloud of the normal group. Since those outliers are
correlated with relatively high *kNNscores*, we could try to calculate a threshold that determines, how extreme an
*kNN* score has to be to qualify an outlier. We will use the saqc implementation of the
`STRAY <https://arxiv.org/pdf/1908.04000.pdf>`_ algorithm, which is available as the method:
:py:meth:`~saqc.SaQC.flagByStray`. Subsequently we project the resulting flags on the *sac* variable with a call to
:py:meth:`~saqc.SaQC.flagGeneric`.
.. doctest:: default
>>> qc = qc.flagByStray(field='kNNscores', target='sac254_corrected', freq='30D', alpha=.3)
>>> qc.plot('sac254_corrected', xscope='2016-11') # doctest:+SKIP
>>> qc.plot('sac254_corrected', phaseplot='level_raw', xscope='2016-11') # doctest:+SKIP
.. plot::
:context: close-figs
:include-source: False
qc = qc.flagByStray(field='kNNscores', target='sac254_corrected', freq='30D', alpha=.3)
.. plot::
:context: close-figs
:include-source: False
:width: 80 %
:align: center
qc.plot('sac254_corrected', xscope='2016-11')
.. plot::
:context: close-figs
:include-source: False
:width: 80 %
:class: center
Peter Lünenschloß
committed
qc.plot('sac254_corrected', phaseplot='level_raw', xscope='2016-11')