Newer
Older
.. SPDX-FileCopyrightText: 2021 Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
..
.. SPDX-License-Identifier: GPL-3.0-or-later
Peter Lünenschloß
committed
.. testsetup:: exampleMV
datapath = './resources/data/hydro_data.csv'
maintpath = './resources/data/hydro_maint.csv'
configpath = './resources/data/hydro_config.csv'
.. plot::
:context:
:include-source: False
import matplotlib
import saqc
import pandas as pd
datapath = '../resources/data/hydro_data.csv'
maintpath = '../resources/data/hydro_maint.csv'
data = pd.read_csv(datapath, index_col=0)
maint = pd.read_csv(maintpath, index_col=0)
maint.index = pd.DatetimeIndex(maint.index)
data.index = pd.DatetimeIndex(data.index)
qc = saqc.SaQC([data, maint])
Peter Lünenschloß
committed
Multivariate Flagging
=====================
The tutorial aims to introduce the usage of SaQC in the context of some more complex flagging and processing techniques.
Peter Lünenschloß
committed
Mainly we will see how to apply Drift Corrections onto the data and how to perform multivariate flagging.
Peter Lünenschloß
committed
Peter Lünenschloß
committed
Peter Lünenschloß
committed
Peter Lünenschloß
committed
----------------
First import the data (from the repository), and generate an saqc instance from it. You will need to download the `sensor
data <https://git.ufz.de/rdm-software/saqc/-/blob/develop/docs/resources/data/hydro_data.csv>`_ and the
`maintenance data <https://git.ufz.de/rdm-software/saqc/-/blob/develop/docs/resources/data/hydro_maint.csv>`_
from the `repository <https://git.ufz.de/rdm-software/saqc.git>`_ and make variables `datapath` and `maintpath` be
paths pointing at those downloaded files. Note, that the :py:class:`~saqc.SaQC` digests the loaded data in a list.
This is done, to circumvent having to concatenate both datasets in a pandas Dataframe instance, which would introduce
`NaN` values to both the datasets, wherever their timestamps missmatch. `SaQC` can handle those unaligned data
internally without introducing artificial fill values to them.
.. testcode:: exampleMV
data = pd.read_csv(datapath, index_col=0)
maint = pd.read_csv(maintpath, index_col=0)
maint.index = pd.DatetimeIndex(maint.index)
data.index = pd.DatetimeIndex(data.index)
qc = saqc.SaQC([data, maint]) # dataframes "data" and "maint" are integrated internally
We can check out the fields, the newly generated :py:class:`~saqc.SaQC` object contains as follows:
.. doctest:: exampleMV
>>> qc.data.columns
Index(['sac254_raw', 'level_raw', 'water_temp_raw', 'maint'], dtype='object', name='columns')
The variables represent meassurements of *water level*, the *specific absorption coefficient* at 254 nm Wavelength,
the *water temperature* and there is also a variable, *maint*, that refers to time periods, where the *sac254* sensor
was maintained. Lets have a look at those:
.. doctest:: exampleMV
Timestamp
2016-01-10 11:15:00 2016-01-10 12:15:00
2016-01-12 14:40:00 2016-01-12 15:30:00
2016-02-10 13:40:00 2016-02-10 14:40:00
2016-02-24 16:40:00 2016-02-24 17:30:00
.... ....
2017-10-17 08:55:00 2017-10-17 10:20:00
2017-11-14 15:30:00 2017-11-14 16:20:00
2017-11-27 09:10:00 2017-11-27 10:10:00
2017-12-12 14:10:00 2017-12-12 14:50:00
Name: maint, dtype: object
Measurements collected while maintenance are not trustworthy, so any measurement taken, in any of the listed
intervals should be flagged right away. This can be achieved, with the :py:meth:`~saqc.SaQC.flagManual` method. Also,
we will flag out-of-range values in the data with the :py:meth:`~saqc.SaQC.flagRange` method:
.. doctest:: exampleMV
>>> qc = qc.flagManual('sac254_raw', mdata='maint', method='closed', label='Maintenance')
>>> qc = qc.flagRange('level_raw', min=0)
>>> qc = qc.flagRange('water_temp_raw', min=-1, max=40)
>>> qc = qc.flagRange('sac254_raw', min=0, max=60)
.. plot::
:context:
:include-source: False
qc = qc.flagManual('sac254_raw', mdata='maint', method='closed', label='Maintenance')
qc = qc.flagRange('level_raw', min=0)
qc = qc.flagRange('water_temp_raw', min=-1, max=40)
qc = qc.flagRange('sac254_raw', min=0, max=60)
Lets check out the resulting flags for the *sac254* variable with the :py:meth:`~saqc.SaQC.plot` method:
:include-source: False
:width: 80 %
:class: center
qc.plot('sac254_raw')
Now we should figure out, what sampling rate the data is intended to have, by accessing the *_raw* variables
constituting the sensor data. Since :py:attr:`saqc.SaQC.data` yields a
`pandas.DataFrame <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`_ like object, we can index it with
the desired variables as column names and have a look at the console output to get a first impression.
.. doctest:: exampleMV
Peter Lünenschloß
committed
>>> qc.data[['sac254_raw', 'level_raw', 'water_temp_raw']] # doctest:+NORMALIZE_WHITESPACE
sac254_raw | level_raw | water_temp_raw |
============================== | ============================= | ================================== |
Timestamp | Timestamp | Timestamp |
2016-01-01 00:02:00 18.4500 | 2016-01-01 00:02:00 103.290 | 2016-01-01 00:02:00 4.84 |
2016-01-01 00:17:00 18.6437 | 2016-01-01 00:17:00 103.285 | 2016-01-01 00:17:00 4.82 |
2016-01-01 00:32:00 18.9887 | 2016-01-01 00:32:00 103.253 | 2016-01-01 00:32:00 4.81 |
2016-01-01 00:47:00 18.8388 | 2016-01-01 00:47:00 103.210 | 2016-01-01 00:47:00 4.80 |
2016-01-01 01:02:00 18.7438 | 2016-01-01 01:02:00 103.167 | 2016-01-01 01:02:00 4.78 |
... ... | ... ... | ... ... |
2017-12-31 22:47:00 43.2275 | 2017-12-31 22:47:00 186.060 | 2017-12-31 22:47:00 5.49 |
2017-12-31 23:02:00 43.6937 | 2017-12-31 23:02:00 186.115 | 2017-12-31 23:02:00 5.49 |
2017-12-31 23:17:00 43.6012 | 2017-12-31 23:17:00 186.137 | 2017-12-31 23:17:00 5.50 |
2017-12-31 23:32:00 43.2237 | 2017-12-31 23:32:00 186.128 | 2017-12-31 23:32:00 5.51 |
[70163] [70163] [70163]
The data seems to have a fairly regular sampling rate of *15* minutes at first glance.
But checking out values around *2017-10-29*, we notice, that the sampling rate seems not to be totally stable:
.. doctest:: exampleMV
>>> qc.data[['sac254_raw', 'level_raw', 'water_temp_raw']]['2017-10-29 07:00:00':'2017-10-29 09:00:00'] # doctest:+NORMALIZE_WHITESPACE
sac254_raw | level_raw | water_temp_raw |
============================== | ============================= | ================================== |
Timestamp | Timestamp | Timestamp |
2017-10-29 07:02:00 40.3050 | 2017-10-29 07:02:00 112.570 | 2017-10-29 07:02:00 10.91 |
2017-10-29 07:17:00 39.6287 | 2017-10-29 07:17:00 112.497 | 2017-10-29 07:17:00 10.90 |
2017-10-29 07:32:00 39.5800 | 2017-10-29 07:32:00 112.460 | 2017-10-29 07:32:00 10.88 |
2017-10-29 07:32:01 39.9750 | 2017-10-29 07:32:01 111.837 | 2017-10-29 07:32:01 10.70 |
2017-10-29 07:47:00 39.1350 | 2017-10-29 07:47:00 112.330 | 2017-10-29 07:47:00 10.84 |
2017-10-29 07:47:01 40.6937 | 2017-10-29 07:47:01 111.615 | 2017-10-29 07:47:01 10.68 |
2017-10-29 08:02:00 40.4938 | 2017-10-29 08:02:00 112.040 | 2017-10-29 08:02:00 10.77 |
2017-10-29 08:02:01 39.3337 | 2017-10-29 08:02:01 111.552 | 2017-10-29 08:02:01 10.68 |
2017-10-29 08:17:00 41.5238 | 2017-10-29 08:17:00 111.835 | 2017-10-29 08:17:00 10.72 |
2017-10-29 08:17:01 38.6963 | 2017-10-29 08:17:01 111.750 | 2017-10-29 08:17:01 10.69 |
2017-10-29 08:32:01 39.4337 | 2017-10-29 08:32:01 112.027 | 2017-10-29 08:32:01 10.66 |
Those instabilities do bias most statistical evaluations and it is common practice to apply some
:doc:`resampling functions <../funcs/resampling>` onto the data, to obtain a regularly spaced timestamp.
(See also the :ref:`harmonization tutorial <cookbooks/DataRegularisation:data regularisation>` for more informations
We will apply :py:meth:`linear harmonisation <saqc.SaQC.linear>` to all the sensor data variables,
to interpolate pillar points of multiples of *15* minutes linearly.
.. doctest:: exampleMV
>>> qc = qc.linear(['sac254_raw', 'level_raw', 'water_temp_raw'], freq='15min')
.. plot::
:context: close-figs
:include-source: False
qc = qc.linear(['sac254_raw', 'level_raw', 'water_temp_raw'], freq='15min')
The resulting timeseries now has has regular timestamp.
.. doctest:: exampleMV
>>> qc.data['sac254_raw'] #doctest:+NORMALIZE_WHITESPACE
Timestamp
2016-01-01 00:02:00 18.4500
2016-01-01 00:17:00 18.6437
2016-01-01 00:32:00 18.9887
2016-01-01 00:47:00 18.8388
2016-01-01 01:02:00 18.7438
...
2017-12-31 22:47:00 43.2275
2017-12-31 23:02:00 43.6937
2017-12-31 23:17:00 43.6012
2017-12-31 23:32:00 43.2237
2017-12-31 23:47:00 43.7438
Name: sac254_raw, Length: 70163, dtype: float64
Since points, that were identified as malicous get excluded before the harmonization, the resulting regularly sampled
timeseries does not include them anymore:
.. doctest:: exampleMV
:include-source: False
:width: 80 %
:class: center
Peter Lünenschloß
committed
Drift Correction
----------------
The variables *SAK254* and *Turbidity* show drifting behavior originating from dirt, that accumulates on the light
sensitive sensor surfaces over time. The effect, the dirt accumulation has on the measurement values, is assumed to be
properly described by an exponential model. The Sensors are cleaned periodocally, resulting in a periodical reset of
the drifting effect. The Dates and Times of the maintenance events are input to the method
:py:meth:`~saqc.SaQC.correctDrift`, that will correct the data in between any two such maintenance intervals.
Peter Lünenschloß
committed
.. doctest:: exampleMV
Peter Lünenschloß
committed
>>> qc = qc.correctDrift('sac254_raw', target='sac254_corrected',maintenance_field='maint', model='exponential')
Peter Lünenschloß
committed
.. plot::
:context: close-figs
:include-source: False
Peter Lünenschloß
committed
qc = qc.correctDrift('sac254_raw', target='sac254_corrected',maintenance_field='maint', model='exponential')
Peter Lünenschloß
committed
.. doctest:: exampleMV
>>> plt.plot(qc.data['sac254_raw']['2016'], alpha=.5, color='black', label='original') # doctest:+SKIP
>>> plt.plot(qc.data['sac254_corrected']['2016'], color='black', label='corrected') # doctest:+SKIP
Peter Lünenschloß
committed
Peter Lünenschloß
committed
plt.plot(qc.data['sac254_raw']['2016'], alpha=.5, color='black', label='original')
plt.plot(qc.data['sac254_corrected']['2016'], color='black', label='corrected')
Peter Lünenschloß
committed
Multivariate Flagging Procedure
-------------------------------
Peter Lünenschloß
committed
We are basically following the *oddWater* procedure, as suggested in *Talagala, P.D. et al (2019): A Feature-Based
Procedure for Detecting Technical Outliers in Water-Quality Data From In Situ Sensors. Water Resources Research,
First, we define a transformation, we want the variables to be transformed with, to make them equally significant in
their common feature space. We go for the common pick of just *zScoring* the variables.
Therefor, we just import *scipys* `zscore` function and wrap it, so that it will be able to digest *nan* values,
without returning *nan*.
.. doctest:: exampleMV
>>> from scipy.stats import zscore
>>> zscore_func = lambda x: zscore(x, nan_policy='omit')
.. plot::
:context: close-figs
:include-source: False
from scipy.stats import zscore
zscore_func = lambda x: zscore(x, nan_policy='omit')
Now we can pass the function to the :py:meth:`~saqc.SaQC.transform` method.
.. doctest:: exampleMV
>>> qc = qc.transform(['sac254_corrected', 'level_raw', 'water_temp_raw'], target=['sac254_norm', 'level_norm', 'water_temp_norm'], func=zscore_func, freq='30D')
.. plot::
:context: close-figs
:include-source: False
qc = qc.transform(['sac254_raw', 'level_raw', 'water_temp_raw'], target=['sac254_norm', 'level_norm', 'water_temp_norm'], func=zscore_func, freq='30D')
The idea of the multivariate flagging approach we are going for, is,
to assign any datapoint a score, derived from the distance this datapoint has to its *k* nearest
neighbors in feature space. We can do this, via the :py:meth:`~saqc.SaQC.assignKNNScore` method.
.. doctest:: exampleMV
>>> qc = qc.assignKNNScore(field=['sac254_norm', 'level_norm', 'water_temp_norm'], target='kNNscores', freq='30D', n=5)
Lets have a look at the resulting score variable.
.. doctest:: exampleMV
:include-source: False
:width: 80 %
:class: center
qc = qc.assignKNNScore(field=['sac254_norm', 'level_norm', 'water_temp_norm'], target='kNNscores', freq='30D', n=5)
Those scores roughly correlate with the isolation of the scored points in the feature space. For example, have a look at
the projection of this feature space onto the 2 dimensional *sac* - *level* space, in november 2016:
.. doctest:: exampleMV
>>> qc.plot('sac254_norm', phaseplot='level_norm', xscope='2016-11') # doctest:+SKIP
:include-source: False
:width: 80 %
:class: center
qc.plot('sac254_norm', phaseplot='level_norm', xscope='2016-11')
Peter Lünenschloß
committed
We can clearly see some outliers, that seem to be isolated from the cloud of the normalish points. Since those outliers are
correlated with relatively high *kNNscores*, we could try to calculate a threshold that determines, how extreme an
*kNN* score has to be to qualify an outlier. Therefor, we will use the saqc-implementation of the
`STRAY <https://arxiv.org/pdf/1908.04000.pdf>`_ algorithm, which is available as the method:
:py:meth:`~saqc.SaQC.flagByStray`. This method will mark some samples of the `kNNscore` variable as anomaly.
Subsequently we project this marks (or *flags*) on to the *sac* variable with a call to
:py:meth:`~saqc.SaQC.transferFlags`. For the sake of demonstration, we also project the flags
on the normalized *sac* and plot the flagged values in the *sac254_norm* - *level_norm* feature space.
.. doctest:: exampleMV
>>> qc = qc.flagByStray(field='kNNscores', freq='30D', alpha=.3)
>>> qc = qc.transferFlags(field='kNNscores', target='sac254_corrected', label='STRAY')
>>> qc = qc.transferFlags(field='kNNscores', target='sac254_norm', label='STRAY')
>>> qc.plot('sac254_corrected', xscope='2016-11') # doctest:+SKIP
>>> qc.plot('sac254_norm', phaseplot='level_norm', xscope='2016-11') # doctest:+SKIP
.. plot::
:context: close-figs
:include-source: False
qc = qc.flagByStray(field='kNNscores', freq='30D', alpha=.3)
qc = qc.transferFlags(field='kNNscores', target='sac254_corrected', label='STRAY')
qc = qc.transferFlags(field='kNNscores', target='sac254_norm', label='STRAY')
.. plot::
:context: close-figs
:include-source: False
:width: 80 %
:align: center
qc.plot('sac254_corrected', xscope='2016-11')
.. plot::
:context: close-figs
:include-source: False
:width: 80 %
:class: center
Peter Lünenschloß
committed
qc.plot('sac254_norm', phaseplot='level_norm', xscope='2016-11')
Config
------
.. testcode:: exampleMV
:hide:
saqc.fromConfig(configpath, [data, maint])
To configure `saqc` to execute the above data processing and flagging steps, the config file would have to look
as follows:
Peter Lünenschloß
committed
.. literalinclude:: ../resources/data/hydro_config.csv